Diffusion Coefficients for Selected Binary Liquid Systems: Cyclohexanes and n-Alkyl Alcohols

C. Ramakanth, Ashok K. Mukherjee, and Tarun R. Das*
Department of Chemical Englneering, Indian Institute of Science, Bangalore 560 012, India

Abstract

In the precent work the integral diffusion coefficients are eatimated by using the diaphragm cell technique. The diffuston coefficlents are measured at varlous compositions for two sets of binary systems: one of cyclohexane and n-paraffinic alcohols and the other of methylcyctohexane and n-paraffinic alcohols. The alcohols used are seven members of homotogous serles of n-paraffinic alcohols from ethanol to octanol. The maxhmum poselble error in the expermental diffusion coefficlent could be 8% for both the cyclohexane-n-alkyl alcohol system and methylcyclohexane-n-alkyl alcohol system. A correlation for each of the two sets of binary systems ls given. The maxhnum deviation in the correlations was less than 6.5 and 3.5% for cyclohexane-n-alkyl alcohols and methylcyclohexane-n-alkyl alcohols, respectively.

This article reports the experimental determination of the mutual diffusion coefficients for binary systems, along with sultable correlations. The systems studied include two sets of binary mixtures: one of cyclohexane and n-paraffinic alcohols and the other of methylcyclohexane and n-paraffinic alcohols. The alcohols used are seven members of the homologous series of n-paraffinic alcohols from ethanol to octanol.

The dlaphragm cell method (2) for finding the diffusion coefficients uses Fick's first law and combines the simplicity and accuracy in determining experimentally the diffusion coefficient. Basically the diaphragm cell (Figure 1) consists of a sintered-glass diaphragm (grade G-4) separating two equalvolumed compartments. The volume of each compartment used in this work is $83 \pm 0.2 \mathrm{~mL}$ with ground-glass joints at either end. By comparison, the volume of the pores of the sintered-glass dlaphragm was $1.09 \mathrm{~cm}^{3}$, negligibly small compared to the volumes of the cell compartments. The liquids in the two compartments were stirred well by two iron-wire-embedded glass stirrers actuated by a rotating magnet. These stirrers wiped twice either side of the dlaphragm with each rotation of the magnet and maintained a uniform concentration throughout the compartment. Thus the concentrration gradient was maintained only in the diaphragm. The stirring rate was kept at 40 rpm for all experimental runs.

The diaphragm cell was calibrated at $25^{\circ} \mathrm{C}$ by diffusing potassium chloride solution (kept in the bottom compartment) into double-distilied water. The equation used to calculate the integral diffusion coefficients is given by

$$
\begin{equation*}
\ln \left(\frac{c_{B}^{\prime}-c_{T}^{\prime}}{c_{B}^{\prime}-c_{T}^{\prime}}\right)=-\beta t D_{A B} \tag{1}
\end{equation*}
$$

where $D_{A B}$ is the integral diffusion coefficient. For the calibration, $D_{A B}$ used in eq 1 is determined by

$$
\begin{equation*}
D_{1}=\frac{\bar{C}_{\mathrm{B}} D_{C_{\mathrm{B}}}-\bar{C}_{\mathrm{T}} D_{C_{T}}}{\bar{C}_{\mathrm{B}}-\bar{C}_{\mathrm{T}}} \tag{2}
\end{equation*}
$$

where

- To whom correspondence should be addressed.

$$
\begin{aligned}
& \bar{C}_{\mathrm{B}}=1 / 2\left(C_{\mathrm{B}}^{1}+C_{\mathrm{B}}^{\mathrm{t}}\right) \\
& \bar{C}_{\mathrm{T}}=1 / 2\left(C_{\mathrm{T}}^{\prime}+C_{\mathrm{T}}^{\prime}\right)
\end{aligned}
$$

The parameters $D_{C_{B}}$ and $D_{C_{T}}$ are the integral diffusion coefft cients that would be obtained in a run of vanishingly short duration at \bar{C}_{B} and \bar{C}_{T}. The values of $D_{C_{\mathrm{B}}}$ and $D_{C_{T}}$ are obtained from Woolf and Tilley (5).
With known values of \bar{C}_{B} and \bar{C}_{T}, the average concentrations of the bottom and top compartments, the cell constant β was obtained. Due to the constant rotation and the abrasive action of the stirrers, the dlaphragm wears out, causing a change in β. Hence after every 720 h , the cell was recallibrated and the new β was used for further calculations. It was observed that the latter is increased by 2.5% of its initial value of 2057.67 cm^{-2}.

The diffusion runs were conducted for a constant period of 24 h after the equilibrium run of $\mathbf{3} \mathrm{h}$. The bottom compartment was always filled with liquld of higher density. The temperature was maintained at $25 \pm 0.05^{\circ} \mathrm{C}$.

All the chemicals used were of analytical grade except for ethanol, which was purified by the method given in Vogel (4). The densities were measured by using an Anton-Paar DMA-55 densitymeter. The densities of pure components are given in Table I, along with the literature values for comparison. Potassium chloride solutions were volumetrically analyzed by using freshly prepared silver nitrate solution.

Composition of solutions were analyzed by an Anton-Paar DMA-55 densitymeter having the accuracy of $0.00001 \mathrm{~g} / \mathrm{cm}^{3}$. The calibration of density data was done by measuring the densities of mixtures of known composition at $25^{\circ} \mathrm{C}$.

Results

Table II lists the experimental diffusion coefficients of cy-clohexane-n-alkyl alcohol binary systems, whlle Table III gives the results for the methylcyclohexane-n-alcohol binarles. Each datum point is the average of two runs with a deviation from the average being less than 0.38%.

The maximum possible error in the density determination is $0.1 \mathrm{~mol} \mathrm{~m}^{-3}$. For all our binary systems the dependence of the density of the mixture on its composition is nonlinear. This leads to error in compositions, $C_{B}^{\prime}, C_{B}^{\dagger}, C_{T}^{\prime}$, and C_{T}^{\dagger}, to about 2 mol m^{-3} at the maximum. For the cell constant, β, it is $5.0 \mathrm{~m}^{-2}$. The maximum error in the determination of time t, is of several orders of magnitude less and hence is not used in the calculation of overall error analysis. The resultant maximum possible error in the diffusion coefficient, D_{AB}, is the highest for the methylcyclohexane-propanol system (about 12\%) and the lowest for the methylcyclohexane-octanol system (about 3\%) and is less than 8% for all the other systems.

Except for the system 1-heptanol-methylcyclohexane, we could not find any report on the experimental determination of diffusion coefficients of these systems in the published Ilterature, and hence no comparative analysis could be made. Robinson et al. (2) have reported their experimental $D_{A B}$ values for 1-heptanol-methylcyclohexane in terms of mean concentration ($\mathrm{g} / \mathrm{cm}^{3}$) of the solvent (methylcyclohexane), where mean is taken as the average of the four $C_{\mathrm{B}}^{1}, C_{\mathrm{B}}^{\prime}, C_{\mathrm{T}}^{\prime}$, and C_{B}^{\prime} terms. On the other hand, we have reported on the basis of the initial mole fraction of the bottom compartment. As their report did

Table I. Physical Properties of the Chemicals Used in the Study at $25{ }^{\circ} \mathrm{C}$

component	molecular weight	$\rho_{\text {expt }}$	$\rho_{\text {lit }}{ }^{\text {a }}$	molecular volume	$\eta_{\text {lit. }}$	$\eta_{\text {expt }}$	purity, \%
ethanol ${ }^{\text {b }}$	46.07	0.78754	0.78506	59.2	1.10	1.37	99.9
propanol	60.10	0.80013	0.79950	81.4	1.97	2.18	99.0
butanol	74.12	0.80863	0.80560	103.6	2.60	3.16	99.0
pentanol	88.15	0.81162	0.81120	125.8	3.68	3.75	99.8
hexanol	102.18	0.81635	0.81560	148.0	4.37	4.83	99.8
heptanol	116.21	0.81912	0.81915	170.2	5.68	5.99	99.9
octanol	130.23	0.82230	0.82210	192.4	7.21	8.45	99.0
cyclohexane	84.16	0.77389	0.77390	118.2	0.84	1.12	99.0
methylcyclohexane	98.18	0.77500	0.76506	140.4	0.89	0.88	99.0

${ }^{0}$ Any Handbook of Physics and Chemistry. ${ }^{6}$ Ethanol is purified from the commercial grade to around 99.9% by using the method prescribed in Vogel (4).

Flgure 1. Diaphragm cell.
not give C_{B}^{\prime}, etc., values, we could not convert their data in terms of initial mole fractions of the bottom compartment. However, we converted our data in terms of the mean concentration of the solvent and found that our data deviate from thers by about 9% on the average, somewhat more than the maximum possible error in our experimental data for the system.

Correlation

The diffusion coefficient data for all compositions of any set of binary systems under study were fitted in the general expression
$D_{\text {AB }}=\left(A_{1}+A_{2} P_{j}\right)+\left(B_{1}+B_{2} P_{1}\right) x+\left(C_{1}+C_{2} P_{1}\right) x^{2}$
where $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$, and C_{2} are the coefficients for one set of binary systems and x is the mole fraction of cyclohexane. P_{1} is a dimensionless property defined in terms of molecular weights, viscositles, and molar volumes of solvent and solute as

$$
\begin{equation*}
P_{1}=\frac{\left(\eta_{A} V_{A} / M_{A}\right)}{\left(\eta_{\mathrm{B}} V_{\mathrm{B}} / M_{\mathrm{B}}\right)} \tag{4}
\end{equation*}
$$

Table II. Comparison of Experimental and Correlated Diffusion Coefficient Values at $25^{\circ} \mathrm{C}$: n-Alkyl Alcohol-Cyclohexane Systems ${ }^{a}$

		diffusion	
solvent	initial	conch	
coefficient $\times 10^{6}$			
mole fraction	experimental	from	
difference	value	eq 5	

Ethanol-Cyclohexane				
0.0000	9.1956×10^{-3}	7.58	7.40	2.5
0.1937	6.3565×10^{-3}	5.94	5.73	3.6
0.3888	4.2133×10^{-3}	6.13	5.85	4.6
0.5726	2.6341×10^{-3}	7.71	7.60	1.4
0.8056	1.0563×10^{-3}	12.50	12.12	3.0

Propanol-Cyclohexane				
0.0000	9.1956×10^{-3}	7.05	7.06	-0.1
0.1954	7.0740×10^{-3}	5.55	5.52	0.6
0.3616	5.4107×10^{-3}	5.58	5.54	0.8
0.6237	3.0173×10^{-3}	8.03	8.05	-0.2
0.8054	1.5043×10^{-3}	11.56	11.57	-0.0

Butanol-Cyclohexane				
0.0000	9.1956×10^{-3}	6.59	6.65	-1.0
0.1846	7.2487×10^{-3}	5.28	5.30	-0.4
0.3818	5.3069×10^{-3}	5.26	5.39	-2.5
0.5849	3.4421×10^{-3}	7.09	7.12	-0.4
0.8047	1.5601×10^{-3}	11.01	10.88	1.2

Pentanol-Cyclohexane				
0.0000	8.9842×10^{-3}	5.84	6.39	-9.4
0.1954	7.1949×10^{-3}	4.70	5.10	-8.6
0.4174	5.8837×10^{-3}	5.08	5.41	-6.6
0.6116	3.4398×10^{-3}	7.03	7.22	-2.7
0.8107	1.6689×10^{-3}	10.15	10.57	-4.2
Hexanol-Cyclohexane				
0.0000	9.1956×10^{-3}	5.74	5.93	-3.3
0.1885	7.6516×10^{-3}	4.70	4.83	-2.9
0.3932	5.8837×10^{-3}	4.82	5.02	-4.1
0.5758	4.2200×10^{-3}	6.06	6.38	-5.4
0.7992	2.0630×10^{-3}	9.05	9.60	-6.1
Heptanol-Cyclohexane				
0.0000	9.1956×10^{-3}	5.11	5.43	-6.3
0.1890	7.8019×10^{-3}	4.44	4.52	-1.9
0.3851	6.2129×10^{-3}	4.53	4.69	-3.7
0.5830	4.4384×10^{-3}	5.70	6.02	-5.5
0.8239	2.0050×10^{-8}	8.85	9.20	-4.0
Octanol-Cyclohexane				
0.0000	9.1956×10^{-3}	4.64	4.39	5.5
0.1875	7.9379×10^{-3}	4.13	3.87	6.3
0.3876	6.4096×10^{-3}	4.29	4.10	4.4
0.5750	4.7668×10^{-3}	5.36	5.05	5.7
0.8195	2.2333×10^{-3}	7.86	7.35	6.4

a $\%$ error $=100(D($ expt $)-D($ calc $) / D($ expt $)$.
where η_{A} and η_{B} are the viscosities, V_{A} and V_{B} the molar volumes at normal boiling point, and M_{A} and M_{B} the molecular weights of solute and solvent, respectively. It can be observed that the dimensions of ($\eta V / M$) are the same as that of the diffusion coefficlent, $\mathrm{cm}^{2} / \mathrm{s}$. Hence the above property P_{1} can be assumed as a reduced diffusion coefficient. The property

Table III. Comparison of Experimental and Correlated Diffusion Coefficient Values at $25{ }^{\circ} \mathrm{C}:$ n-Alkyl Alcohol-Methylcyclohexane Systems ${ }^{\text {a }}$

solvent mole fraction	initial concn difference	$\begin{gathered} \text { diffusion } \\ \text { coefficient } \times 10^{6} \end{gathered}$		\% error
		experimental value	$\begin{aligned} & \hline \text { from } \\ & \text { eq } 6 \\ & \hline \end{aligned}$	
Ethanol-Methylcyclohexane				
0.0000	7.7943×10^{-3}	7.01	6.99	0.3
0.1993	5.0415×10^{-3}	5.96	5.96	-0.1
0.4042	3.1321×10^{-3}	5.41	5.50	-1.6
0.5917	1.8852×10^{-3}	5.55	5.59	-0.7
0.7994	8.0007×10^{-4}	6.04	6.28	-4.0
Propanol-Methylcyclohexane				
0.0000	7.7916×10^{-3}	7.46	6.76	9.4
0.1915	5.5477×10^{-3}	5.75	5.88	-2.4
0.4231	3.4595×10^{-3}	5.43	5.51	-1.4
0.6181	2.0700×10^{-3}	5.69	5.78	-1.4
0.8051	9.6744×10^{-4}	6.33	6.53	-3.1
Butanol-Methylcyclohexane				
0.0000	7.7934×10^{-3}	7.10	6.47	8.8
0.1989	5.7869×10^{-3}	5.53	5.73	-3.6
0.4085	3.9671×10^{-3}	5.53	5.53	0.0
0.6131	2.4265×10^{-3}	5.92	5.92	0.1
0.7870	1.2651×10^{-3}	6.66	6.70	-0.5
Pentanol-Methylcyclohexane				
0.0000	9.0898×10^{-3}	6.38	6.29	1.4
0.1929	7.3205×10^{-3}	5.40	5.66	-4.8
0.3810	5.6003×10^{-3}	5.63	5.52	2.0
0.5934	3.6696×10^{-8}	6.15	5.95	3.3
0.7893	1.8967×10^{-3}	6.97	6.88	1.3
Hexanol-Methylcyclohexane				
0.0000	7.7934×10^{-3}	6.16	5.97	3.0
0.1963	6.2337×10^{-3}	5.17	5.50	-6.5
0.3948	4.6724×10^{-3}	5.69	5.55	2.6
0.6100	2.9953×10^{-3}	6.40	6.18	3.5
0.8154	1.4107×10^{-3}	7.34	7.35	-0.0
Heptanol-Methylcyclohexane				
0.0000	7.7910×10^{-3}	5.73	5.62	1.9
0.1804	6.4966×10^{-3}	5.02	5.35	-6.4
0.4085	4.7950×10^{-3}	5.80	5.59	3.6
0.6202	3.1444×10^{-3}	6.57	6.47	2.4
0.8009	1.6794×10^{-3}	7.64	7.57	1.0
Octanol-Methylcyclohexane				
0.0000	7.7910×10^{-3}	4.99	4.90	1.8
0.1998	6.4813×10^{-9}	4.85	5.02	-3.5
0.4399	4.7636×10^{-3}	5.80	5.79	0.2
0.6194	3.3625×10^{-3}	6.79	6.82	-0.4
0.8016	1.8242×10^{-3}	7.99	8.25	-3.3

a \% error $=100(D($ expt $)-D($ calc $)) / D($ expt $)$.
value of each binary system is different. The parameters A_{1}, $A_{2}, B_{1}, B_{2}, C_{1}$, and C_{2} have been evaluated from the experimental diffusion coefficients by using eq 3 . The generalized equation for the cyclohexane system is

$$
\begin{align*}
& D_{A B}=\left(7.89161-0.44144 P_{i}\right)+ \\
& \left(-14.56311+1.24877 P_{i}\right) x+\left(25.84103-1.98428 P_{i}\right) x^{2} \tag{5}
\end{align*}
$$

The calculated and experimental values are tabulated in Table II. The average disagreement between the correlated and experimentally determined values is 3.58%, with the maximum being 6.29%.

Similarly a general equation for the binary systems of methylcyclohexane and n-paraffinic alcohols is obtained as given below:

$$
\begin{align*}
& D_{\mathrm{AB}}=\left(7.33556-0.24556 P_{i}\right)+ \\
& \quad\left(-7.56082+0.70014 P_{i}\right) x+\left(7.31085-0.13330 P_{i}\right) x^{2} \tag{6}
\end{align*}
$$

where P_{1} is defined by eq 4 and is a property of the ith binary

Figure 2. Plots of diffusion coefficients vs mole fraction of the cyclohexane at $25^{\circ} \mathrm{C}$ (calculated from eq 5).

Flgure 3. Plots of diffusion coefficients vs mole fraction of the methylcyclohexane at $25^{\circ} \mathrm{C}$ (calculated from eq 5).
in methylcyclohexane-n-paraffinic alcohol systems. The $D_{A B}$ values are tabulated in Table III. The average disagreement in the predicted and experimental diffusion coefficient values is 2.58%, with the maximum being 3.54%.

Plots of $D_{A B}$ vs composition for all the binary systems of cyclohexane and methylcyclohexane with n-paraffinic alcohols are given in Figures 2 and 3, respectively. The plots show a U-shaped trend for both series of cyclohexane and methylcyclohexane binary systems. The curve of the ethanol-cyclohexane binary system is the topmost of all the curves, and the octanol-cyclohexane is the lowest one. This is so because ethanol, having the lowest molecular weight of all the alcohols used, has the greatest diffusivity and octanol, being the biggest molecule, is the slowest diffusing. All the curves are parallel, showing the regular gradation in the values of the diffusion coefficient. The curves for ethanol-cyclohexane and etha-noi-methylcyclohexane binary systems are more concave than those of other systems because of their higher nonideal nature. As the molecular weight increases, the nonideal nature decreases. Hence the curvature for the diffusion coefficient versus composition curves for the binary systems of higher alcohols is decreasing. The literature (1), for binary systems with cyclohexane as one of the components, shows a similar trend of U-shape. It is expected that all the curves of n paraffinic alcohols and cyclohexane binary systems should approach asymptotically to a point when extrapolated to unity
of the mole fraction of cyclohexane, the $D_{A B}$ value at that point being the limiting mutual diffusion coefficient of the solutes in cyclohexane.
The graph for the binary systems comprising methylcyclohexane as one component and n-paraffinic alcohols as the other is given in Figure 3. The curvature of ethanol-methylcyclohexane is more, while that of the octanol-methylcyclohexane binary system is less, as expected. Further, this figure also shows an interesting feature in that all the curves meet around a single point (approximately at 36% of methylcyclohexane). To the left of the point of intersection the curves show the regular nature; that is, ethanol has a higher value of diffusion coefficient than the others and the gradation can be observed as in the cyclohexane-alcohol binary systems. However, on the right of the point of intersection, the trend is exactly opposite, with the diffusion coefficient values for higher alcohols more than that for the lower alcohols. The values for the diffusion coefficients of methylcyclohexane-alcohol binary systems are lower than those for cyclohexane-alcohol series at corresponding compositions. The present theories of liq-uld-state diffusion are inadequate to predict the nature of the graph or the values of the diffusion coefficients.

Two features of the present work are to be noted. Firstly, though all n-alkyl alcohols from ethanol to 1 -octanol are completely miscible with cyclohexane and methylcyclohexane, methanol is not miscible in all proportions. Hence the binary systems methanol-cyclohexane and methanol-methylcyclohexane could not be studied in the present work. Secondly, the density of the binary systems ethanol-cyclohexane, propanolcyclohexane, and ethanol-methylcyclohexane, for some of the compositions, is lower than either of the pure components. Thus for these systems, whenever the mixture density was lower than that of cyclohexane density, the experiment was conducted by keeping the pure solvent in the bottom compartment.

Conclusion

The correlations given have limitations in that each correlation is applicable only to the system concerned. Further, they do not take care of the temperature effect and hence are applicable only at the temperature used in this work, and finally they cannot be applied to evaluate limiting mutual diffusion coefficients for $x_{A} \rightarrow 0$ and $x_{B} \rightarrow 0$, respectively.

Glossary

A_{1}, A_{2}	coetficients in eq 3
B_{1}, B_{2}	coetficients in eq 3
C_{1}, C_{2}	coetficients in eq 3
\bar{C}_{B}, \bar{C}_{T}	average concentrations in the bottom and top compartments, $\mathrm{g} / \mathrm{cm}^{3}$
$C_{8}^{\prime}, C_{B}^{\prime}$	concentrations in the bottom compartment, Initial and final, respectively, $\mathrm{g} / \mathrm{cm}^{3}$
$C_{T}^{\prime}, C_{\top}^{\prime}$	concentrations in the top compartment, initial and final, respectively, $\mathrm{g} / \mathrm{cm}^{3}$
$D_{\text {AB }}$	mutual diffusion coefficient, $\mathrm{cm}^{2} / \mathrm{s}$
$D_{\text {AB }}^{\text {A }}$	diffusion coefficient at infinite dilution, $\mathrm{cm}^{2} / \mathrm{s}$
$D_{C_{B}}$	diffusion coefficient at the bottom compartment average concentration, $\mathrm{cm}^{2} / \mathrm{s}$
$D_{C_{T}}$	diffusion coefficient at the top compartment average concentration, $\mathrm{cm}^{2} / \mathrm{s}$
$M_{\text {A }}$	molecular weight of A
P_{1}	property used in correlation defined by eq 4
$V_{\text {A }}$	molar volume, $\mathrm{cm}^{3} / \mathrm{g}-\mathrm{mol}$
x	mole fraction of the solvent
β	cell constant, cm^{-2}
$\eta_{\text {A }}$	viscosity of component $\mathrm{A}, \mathrm{g} /(\mathrm{cm} \cdot \mathrm{s})$
$\eta_{\text {expt }}$	experimentally determined viscosity for pure components, $\mathrm{g} /(\mathrm{cm} \cdot \mathrm{s})$
$\eta_{\text {lit. }}$	viscosity from literature for pure components, g/ (cm $\cdot \mathrm{s}$)
$\rho_{\text {expt }}$	experimentally determined density for pure components, $\mathrm{g} / \mathrm{cm}^{3}$
$\rho_{\text {Ilt }}$	density from literature for pure components, $\mathrm{g} / \mathrm{cm}^{3}$
Reglst 87-5; cy	No. Ethanol, 64-17-5; propanol, 71-23-8; butanol, 71-36-3; 1-41-0; hexanol, 111-27-3; heptanol, 111-70-6; octanol, 111hexane, 110-82-7; methylcyclohexane, 108-87-2.

Literature Cited

(1) Ghai, R. K.; Erti, H.; Dullien, F. A. L. AIChE J. 1973, 19, 881.
(2) Robinson, R. L., Jr.; Edmister, W. C.; Dullien, F. A. L. Ind. Eng. Chem. Fundam. 1966, 5, 74.
(3) Stokes, R. H. J. Am. Chem. Soc. 1850, 72, 763
(4) Vogel, A. I. Textbook of Practical Organic Chemistry; ELBS: London, 1975.
(5) Wooli, L. A.; Tilley, J. F. J. Phys. Chem. 1967, 71, 1962.

Vapor-Liquid Equilibria for Four Binary Systems Made of Alcohol and Cyclohexylamine at 100 kPa

Masahiro Kato, * Hiroyuki Tanaka, and Hiroshi Yoshlkawa
Department of Industrial Chemistry, Faculty of Engineering, Nihon University, Koriyama, Fukushima 963, Japan

Bolling points for four binary systems made of an alcohol (methanol, ethanol, 1-propanol, or 2-propanol) and cyclohexylamine were measured with a flow-type ebulllometer at $\mathbf{1 0 0 - k P a}$ pressure, and their isobaric vapor-liquid equilibrium relations were determined.

Introduction

Vapor-liquid equilibria are required for an engineering application such as the design and operation of distillation equip-
ment. Vapor-liquid equilibrium relations can be determined from boiling point curves, which are more easily obtained than conventional equilibrium measurements.

The flow-type ebulliometer was previously proposed for measuring isobaric bubble points (1). In the present study, boiling points were measured with the flow-type ebulliometer for the four binary systems made of an alcohol (methanol, ethanol, 1-propanol, or 2-propanol) and cyclohexylamine, and their vapor-phase compositions were determined by the successive calculation method of Tao (2) with vapor-phase corrections of Hayden-O'Connell (3). Vapor-liquid equilibrium data

